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ABSTRACT: The paper presents major aspects of the land use change. Changes in land
coverage such as deforestation, agricultural expansion and urbanization have been identified
to be not only a consequence of environmental change but also a significant cause driving
further changes globally in response to the altering of biogeochemical cycles. Economic
performance of Agriculture is therefore directly impacted by climatic conditions which
invariably alter energy flows and consequently the performance, health and persistence of
both crops and other land cover. 

This study intends to assess and compare the recent the land cover/land use within the
small region of Crăciunelul de Jos, Romania using RS and GIS processing to provide
localized insight regarding the environmental shifts and expansion of this region
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Historically, land has been altered
naturally over time and via human activities
to take advantage of resources (farming,
water and urbanization), however it is a
growing understanding that land use changes
are impacted on a global scale due to human
activities influencing environments [Gries &
Redlin, 2019). The characteristics and
patterns of land cover are essential factors
underlying biophysical processes and key for
developing models of the Earth’s surface to
understand the influence of anthropogenic
activities [Bounoua et. al 2002; Herold et al
2008). The appropriate management of
resources, development strategies and
conservation practices are dependent on the
understanding of land cover information
[Gómez, White, & Wulder, 2016). 

This study intends to assess and compare
the recent the land cover/land use within the
small region of Crăciunelul de Jos, Romania
using RS and GIS processing to provide
local ized insi gh t  r egarding the
environmental shifts and expansion of this
region. Accuracy assessment will be carried
out to indicate how well the RS imaging is

classified. The need for further investigation
and monitoring of geospatial parameters will
be identified by the comparison where
necessary to encourage or maintain
sustainable development goals. The analysis
would prove to be of particular use to both
business and government stakeholders for
future land use planning and projects as
Romania continues to grow and develop. 
                       

1. Methods

1.1. Area of study

Crăciunelul de Jos is a small village
within the Alba county of Transylvania,
located at 46.1715° N, 23.8361° E [Google
Maps, 2020). The assessment was limited to
the land area within the Romanian
communal boundary of Crăciunelul de Jos,
covering approximately 25.25 km2. The
village itself falls within the Târnava Valley
with elevations ranging between 225m and
396m above sea level and is positioned along
the Târnava River, which was designated as
a Site of Community Interest (SCI) area in
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2013 by Natura 2000. Existing data for this
SCI identifies the area as possessing a
high-ranking input of Nitrogen pollution and
no existing management plan (Natura 2000,
2019). The Târnava River forms from the
confluence of the Târnava Mare and Târnava
Mica rivers; and is one of the major
tributaries of the Mureş River of up to 21%
of the watershed [Bănăduc, 2005].  The
basin of the Târnava Mare and Mica rivers
houses the successful Târnava Vinyards run
by the Jidvei Winery [Coros, Pop & Popa,
2019].

The climate of the locality is considered
continental temperate and classified as Cfb
under the Köppen-Geiger climate
classification system. Average temperatures
range from -0.9 and 19.3 degrees Celsius
between summer and winter respectively and
annual precipitation averages 572mm, with
the majority occurring in summer
[Climate-Data, 2020.  The temporal focus of]
the assessment will surround the month of
April; the middle of Romania’s spring period
with average temperatures of 10.8 ° C and
precipitation of 47mm. The map of the study
area is shown in Figure 1. 

General descriptions of various points of
interest and landforms describing
Crăciunelul de Jos are already compiled
[Mărculeţ I. & Mărculeţ C. 2017], however
not enough specific information regarding
the  distribution,  coverage  and
environmental statistics exist in a compiled
manner to conceptualize the area in a way
which adds value to this land use
assessment. Consequently, intuitive decisions
and descriptions are made for the
classification of land types of this assessment
(table 1a). 

1.2. Data Acquisition and processing 

Multiband spectral images originating
from the Sentinel-2B satellite were acquired
via the United States Geological Survey
(USGS) EarthExplorer portal; which
redistributes Sentinel data products
originating from the European Space Agency
(ESA) Copernicus program. The Sentinel
data was preprocessed by the ESA to
Level-1C products and repackaged by USGS
into tile-based bundles for distribution. The
Sentinel-2B satellite uses a multispectral

Fig.1. (a) Area of study; Crăciunelul de Jos within white boarder.
(b) Composite shaded relief map 
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instrument (MSI) to acquire 13
electromagnetic spectral bands ranging from
443nm to 2190nm wavelengths. The
predominant bands of interest for this
analysis were bands 2, 3, 4, 8 and 11 (490nm
blue, 560nm green, 665nm red, 842 visible
and near infrared/VNIR and 1610nm short
range infrared/SWIR respectively), selected
for their implementation in vegetation
indices, detailed spatial resolution of 10m
(20m for SWIR) and pre-processing level.
The specific datasets used for temporal
comparisons were selected to have the most
comparable dates to minimize seasonality
differences in land cover/usage, global
positioning and weather variables. The
selected datasets were 27th April 2016 and
23rd April 2020 for their date proximity and
minimal cloud cover.   

The Digital elevation model (DEM) was
also acquired via the USGS EarthExplorer,
however data used originated from the Space
Shuttle Endeavor during the Space Shuttle
Radar Topography Mission (SRTM), 11
February 2000. The SRTM developed
topographical models with resolutions of
30m (1 arc-second) which have been widely
accessible online since September 2014. It is
worth noting that SRTM data has been
edited to fill small voids, remove spikes and
wells, delineate and flatten water bodies and
define coastlines with larger areas of missing
data being filled by the National
Geospatial-Intelligence Agency (NGA) using
other sources of elevation data in conjunction
with interpolation algorithms.     

All image processing during the analysis
was achieved using ArcMap 10.7 software
and implemented the projected coordinate
system WGS 1984 UTM Zone 34N. Data
from the acquired DEM and spectral images
were geometrically extracted to the
coordinates of the Crăciunelul de Jos
regional boundary outlined by the Romania
Regiuni Boundaries 2017 feature service
provided by Esri via the ArcGIS online
database. 

1.3. Spatial Analysis

Analysis of the spectral images involved
the calculation of several remote sensing
(RS) indices, including Normalized
Difference Vegetation Index (NDVI),
Normalized Difference Moisture Index
(NDMI), Bare Soil Index (BSI) and
Normalized Difference Water Index (NDWI)
using the raster calculator. Layer stacking
and comparison of the different indices assist
in the visual interpretation of the
multispectral image, particularly changes in
land coverage [HemaLatha, Varadarajan &
Pandian, 2019]. The calculated Indexes
return values on a scale between -1 and 1
which correlate with different surface
conditions based on the reflectance of the
associated bands.   

NDVI is a significant vegetation index
applied to a range of studies globally
involving environment, climate change and
land monitoring. The NDVI is highly related
to vegetation content, typically utilized to
quantify the photosynthetic capacity of
vegetation [Rahman & Mesev, 2019). NDVI
utilizes bands 8 and 4 to measure the
reflectance ratio of red and near infrared
wavelengths whereby greater reflectance
corresponds to denser, healthier vegetation.
NDVI is determined using the equation:

NDMI implements the normalized
difference of the bands 8 and 11 (VNIR and
SWIR) where the reflectance highly
correlates to canopy water content (Jin &
Sader, 2005). The NDMI was calculated
using:

The BSI acts as an indicator to assist in
the capture of bare soil and soil variations,
combining the bands 11, 4 and 2 (SWIR, red
and blue) whereby higher values indicate
there is more bare soil. BSI was calculated as
follows:
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The NDWI uses bands 3 and 8 (green
and VNIR) and is often used in conjunction
with NDVI for mapping vegetation and
surface waters [Jackson et al. 2004). Greater
reflectance is relative to greater water
content. NDWI was calculated with the
formula:

Manipulation of the DEM enhances the
visualization of topography via the creation
of contour, relief shading, aspect and incline
layers using arcGIS toolsets. Topography has
been shown to influence land usage
suitability due to physical variables including
elevation, hydrology, sunlight/shadowing
and erosion [Elsheikh, 2013]. Creation of
these layers add value to the analysis of land
cover change by identifying correlations
between topographical features in relation to
land cover extent using the layer stacking
technique. Inherent errors are known to exist
in DEMs and amplified when manipulated
[Wechsler, Hyowon, & Li, 2019], as such
this data is used qualitatively as opposed to a
geospatial truth. 

Land use classification followed the
supervised classification method. This
classification technique can be defined as the
development of spectral signatures by the

user, implementing training sites
representative of known land cover such as
urban or forest, before software assigns each
pixel in the image the class which its
signature is most comparable to [Eastman,
2003]. For this analysis the spectral
reflectance of the blue, green, red and VNIR
bands were compiled into composite layers
(RGBNIR colour composite) to provide the
data for training classes. Training sites were
selected from across the area of study and
compiled into 7 different land cover classes
which were saved as a signature file with
classes defined as in table 1. Class
determination utilized a combination of
visible features from a true colour composite
and the land cover indices previously
determined.

Maximum likelihood classification
(MLC) algorithm was selected for this
classification as it is one of the most widely
used. The MLC depends on the probability
distribution of the feature classes as per the
Bayes’ theorem; with the algorithm
determining the probability of each pixel
belonging to those classes and then assigning
the most likely as the resulting land cover
[Richards, J. A. 2014]. This type of
classification is largely controlled by the
analyst and which pixels are selected to be
representative of the classification, with
satisfactory spectral signatures resulting in
minimal confusion between classes [Gao &
Liu, 2010].   
  MLC: 
 

Table 1. Land cover classes and respective user definitions for
multispectral image classification



Land and use cover change assessment of an agricultural area in Romania 9

Where:
i = class
x = n-dimensional data (where n is the

number of bands)
p(ωi) = probability that class ωi occurs in the

image and is assumed the same for all
classes

|Σi| = determinant of the covariance matrix
of the data in class ωi

Σi-1 = its inverse matrix
mi = mean vector

1.4. Statistical Analysis

Determining the statistical accuracy of
the classifications is vital for understanding
quantitively how well the classification
model identifies pixels as the correct land
cover class. For this study an error matrix,
also known as confusion matrix [Eastman,
2003], was generated by selecting an equal
number of known pixels (unrelated to the
training groups) from each land cover type
and comparing how many pixels were
correctly or incorrectly identified. A total of
120 pixels were manually selected for each
temporal map, ranging across the entire
geographical extent. Known pixels were
clearly identified using the Sentinel high
resolution true colour images and
comparison of the calculated indexes to
ensure high levels of confidence. This is the
best method available due to the lack of
obtainable field data confirming coordinates
and land cover for these temporal periods. 

Based on the compiled error matrixes
statistics can be calculated; for this study
user accuracy, production accuracy and
overall accuracy are calculated. Accuracy
from the perspective of the map user (user
accuracy) shows how often the map class is
representative of the class on the ground,
otherwise referred to as reliability and is
calculated by dividing the total number of
correctly identified sites by the number of
sites classified. Accuracy from the
perspective of the map maker (producer
accuracy) represents how often real features

are appropriately represented on the map and
calculated by dividing the number of
correctly classified reference sites by the
number of total reference sites. Overall
accuracy represents the probability that
points are correctly identified by the
classification and compares the user and
producer accuracies, calculated by total
number of correct predictions divided by the
total number of predictions. 

Additionally, the Root Mean Square
Error (RMSE) is calculated to determine the
root square of the variance of the residuals,
indicating the absolute fit of the model in
meters. RMSE is known to be the most
important measure for determining the
accuracy of prediction fit within a model
[Abdulrazak, 2018]. The RMS equation
implemented is:

Where: 0i = observed value
 Si = predicted value
 N = number of samples.

2. Results

Figure 1b identifies the geographical
relief of the study area with an elevation
range of 171 meters  between a 396 high and
225 meters low (above sea level). Three
distinct ridgelines exist along the North
North-East axis, forming valleys and
drainage pathways to an expansive
floodplane surrounding the Târnava River.
The overall degree of incline throughout the
region undulates between 0 and 4 degrees,
however inclination angles climb sharply
towards the ridgeline peaks on the southern
side of the floodplain before flattening (fig.
2b). The undulations throughout the
floodplain creates slopes facing all directions
however Southern slopes are seen to cover
the most amount of land area within the
region compared to other directions. Flat
ground (slope of 0) was mostly absent (fig.
2a).   
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The NDVI comparison identifies a clear
shift in vegetation reflectance and coverage
(figure 3); maximum and minimum NDVI
values dropped by approximately 0.06
between 2016 and 2020 whilst the mean
NDVI for the region dropped from 0.866 to

0.386. 
The overall distribution of NDVI points

(as per figure 4) shifted to indicate more
pixels falling within a threshold 0.1-0.2,
suggesting a larger area has minimal
vegetative cover compared to 2016.

Fig. 3. (a) Normalised Difference Vegetation Index map 2016
(b) Normalised Difference Vegetation Index map 2020

Fig. 2. (a) Colour coverage map representing slope direction.
(b) Colour map representing angle of slope
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NDMI identifies a similar trend showing
the decrease of vegetation moisture content,
correlating with the NDVI decrease in
vegetation cover; with minimum and
maximum values dropped by approximately
0.06 in 2020 compared to 2016 (figure 5).
The mean NDMI also decreased from 0.24 to
-0.02 in 2020, indicating lower average
canopy cover and potentially higher water
stress of remaining vegetation. The
distribution of points identifies a majority of
2020 values falling between -0.2 and 0
which correlates with low canopy cover and
high-water stress compared to the 0.6-0.8

distribution seen in 2016. 
NDWI clearly identifies the Tarnava

River and an unidentified small
lake/seasonal tributary in both datasets
(figure 7). NDWI product values suggest an
overall increase in surface water content in
2020 compared to 2016 with maximum and
mi n i mum values increa s i n g  by
approximately 0.04 and 0.07 respectively
(figure 7).

Analysis of the data distribution (figure
8) confirms the overall increase and could be
representative of improving water stress in
contrast with the NDMI results. 

Fig. 5. (a) Normalised Difference Moisture Index map 2016
(b) Normalised Difference Moisture Index map 2020

Fig. 4. (a) value frequency distribution of 2020 NDVI pixels
(b)value frequency distribution of 2016 NDVI pixels
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Fig. 7. (a) Normalised Difference Water Index map 2016
(b) Normalised Difference Water Index map 2020

Fig. 6. (a) value frequency distribution of 2020 NDMI pixels
(b)value frequency distribution of 2016 NDMI pixels

Comparing BSI for the 2020 and 2016
data sees the maximum bareness increase by
approximately 0.06 whilst minimum
bareness increased by 0.18, indicating that
bare soil coverage has increased in all areas
(figure 9). A clear positive shift in the data
distribution is observed between the years,
increasing mean BSI by ~0.23 (figure 10). 

The land use/land cover map for 2016
(figure 11a) is dominated by Grassland with
9235.6 m2 coverage. This is followed by
Urban (5071.9 m2), Agriculture (4474.6 m2)
and Fallow (4164.8 m2). 

Smaller areas of Tree Canopy exist
(2105.9 m2) and even less water (198.1 m2),
however no Degraded Grassland was
identified (table 2).

The land use/land cover map for 2020
(figure 11b) was notably different;
Grassland, Urban and Agriculture coverage
decreased by 9.63%, 5.79% and 1.74%
respectively. Water and Fallow increased
marginally (0.24% and 6.13%), however
Degraded Grassland was now detectable,
covering 19.13% (table 2). No Tree canopy
was detected in this classification.
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Fig. 9. (a) Bare Soil Index map 2016 (b) Bare Soil Index map 2020

Fig. 10. (a) value frequency distribution of 2020 BSI pixels 
(b)value frequency distribution of 2016 BSI pixels

 Fig. 8. (a) value frequency distribution of 2020 NDWI pixels 
(b)value frequency distribution of 2016 NDWI pixels
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Fig. 11. (a) Land use/land cover classification map 2016.
(b) Land use/ land cover classification map 2020

Classification accuracies for the
generated models revealed that whilst overall
accuracy was similar between the datasets
(81.8% and 83.5%) relative user and
producer accuracies were more variable
bertween each land cover class (tables 3 &
4).The calculated RMSE returned
comparable values between the two
classifications (4.18m and 4.16m), which
were lower than the 10m spectral resolution
of the map, thus indicating good overall fit.

3. Discussion

All spectral indices observe the similar
decreases in healthy vegetative cover and
increased extent of bare soils, other recent
studies indicate that the correlation between
decreased moisture content (as visualized in
figure 5) and other hydrological factors such
as precipitation and temperature are often
causal for such changes [Yang et al. 2019].

Table 2. Area of Land use/land cover type for April 2016 and 2020, calculating change
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Table 4. Accuracy assessment for land cover classification model 2020

Although  no data regarding temporal
specific precipitation and temperature were
found for this region; broader climate
changes for Romania identify overall
decreased precipitation and increased
temperatures, particularly in the past decade
[World Bank Group, 2020), which are likely
large factors influencing decreased land
coverage and health of observed grasslands
and tree canopy. Land identified as
Agriculture show more consistent NDMI
values between the temporal comparison
compared to other types of vegetation,
however this is possibly a result from
ongoing shifts towards the need for irrigation
and supportive farming practices to maintain

crop productivity. Further investigation
towards specific farming practices is
necessary to evaluate the sustainability of
such methods due to the degradation of
surrounding land cover.

The notable increase in overall NDWI
could potentially be related to the overall
increased area of bare soils due to the
spectral reflectance of band 3 not being
evaluated in the BSI. Consequently, soil
minerology may be interfering with the
NDWI due to shorter wavelengths between
400 µm and 1000 µm (inclusive of band 3)
increasing reflectance for soils high in iron
oxides [Huete, 2004). Alternatively, it is
speculated that poor soil drainage and recent

Table 3. Accuracy assessment for land cover classification model 2016
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precipitation events in the 2020 dataset may
be the cause for these higher average values
and result in a disparate comparison within
the scope of this study. Various areas of
Fallow land depicted higher NDWI values
for both the 2016 and 2020 maps and could
be representative of saturated soils or
influenced surface minerology due to
farming practices including irrigation and
fertilization. Future Analysis of soil profiles
and characteristics within the region will
assist in the interpretation of the variable
NDWI and provide insight to soil suitability
and degradation land cover classes. 

The minor decrease in Agriculture
coverage identified in this study (table 2) can
be largely attributed to the increase in Fallow
land and potential shift in farming practices
reflective of environmental changes. Without
exact knowledge of the crops and harvest
times it is useful to combine Fallow and
Agriculture classes to better represent the
total land used for all agricultural practices.
Thus, the total agricultural cover change can
be considered a relatively small increase of
4.39% over 4 years. Agroforestry practices
such as increasing tree coverage are shown
to increase carbon biomass sequestration on
agricultural lands, contributing to climate
change mitigation [Zomer et al., 2016).
However, the complete removal of detectable
Tree Canopy by 2020, likely due to
expansions of nearby crop fields, identifies a
total land cover area decrease of 8.34%
suggesting the expansions to date have been
inefficient and potentially unsustainable as a
result. Studies of Romanian land determine
that pursuit of sustainable development of
agriculture is best achieved following
organic farming practices, aiming to balance
productivity with conservation [Aurelian,
Paschia & Coman, 2019). This tactic
includes the use of perennial crops,
increasing crop diversity and tree coverage to
protect soil degradation whilst maintaining
surrounding natural landforms and cover to
protect and promote ecosystem services.
Current land cover change suggests these

strategies may not be implemented
effectively in this region, reinforcing the
need for in-depth assessment of localized
agricultural practices to identify
improvements for achieving sustainable
development.  

The combined effect of vegetative
degradation, potential anthropogenic
practices and climate shifts are likely to
increase future rates of soil erosion, runoff
and costs for land management. Not only has
previous research identified that erosion and
sediment yield are influenced by the
changing order of precipitation events, such
as extended periods of drying before rainfall,
but also the mitigation of such surface flows
regardless of soil type is evident in vegetated
areas [Williams, et al. 2019; Le, et al. 2020).
The surface flow patterns of Crăciunelul de
Jos are easily visualized in the relief and
slope direction maps (figure 1b and 2a),
whereby the majority of surface flow will
eventualize in the floodplains and Tarnava
River. Increased erosion and runoff are likely
to result in increased eutrophication locally
and at other environments downstream,
particularly due to the associated agricultural
land cover in the floodplains themselves.
Although floodplain farming practices can
take advantage of greater water availability,
increased degradation and climate change
factors require a proactive approach to water
quality monitoring and minimizing local
con tr ibut ions to the catchment .
Rehabilitation of vegetative cover will likely
improve potential future outlooks on erosion
and surface flow, minimizing impacts on
agricultural land and the Tarnava River.  

The decrease in classified Urban
coverage appears to be caused by
classification error between the models.
Visual inspection of both maps compared to
the true colour image reveals that the 2016
dataset appears to classify Urban more
extensively compared to 2020, however both
models clearly classify many pixels as Urban
when they should actually be Grassland or
Fallow. Because of this disparity not clearly
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reflected in the accuracy assessment, the
Urban class coverage is unreliable for
comparison. This may suggest other
substantial errors not as easily recognizable
in the classification models and future
classifications would benefit from larger
samples of known pixels being used as a
reference when constructing the error matrix
for statistical analysis. Consequently, all
classes and the RMSE may be more variable
than initially indicated in this study and land
cover classifications should continue to be
developed.

4. Conclusions

Use of remotely sensed data have
allowed the visualization, classification and
quantification of land use/land cover change,
however lack of known land cover used may
have introduced excessive bias and results
should therefore be used qualitatively to
depict overall patterns only.

Although Romania aims for sustainable
development by 2030, it is identified that the
region of Crăciunelul de Jos requires reeva-

luation surrounding climate and land use
practices to approach this goal. This study
has identified an extensive shift in vegetation
cover and health in recent years.

Climate changes are likely to play a
large role in vegetative degradation, however
unsustainable agricultural practices and
expansion will inevitably accelerate this
process. It is suggested that soil analysis
takes place to identify current soil
characteristics for ongoing monitoring and
suitability of production. Education and
funding for sustainable developments could
create project opportunities surrounding
rehabilitation, analysis and increased
productivity in the future. 

The connectedness of this region with
other parts of the county via the topography
and Tarnava River make it particularly
important for water and soil quality
monitoring as local degradation related to
land use could alter streamflow and impact
communities and production downstream.
Future studies are needed to accurately
quantify and separate the effect of climate,
topography, soil and vegetation influences
based on the features and changes identified.

References

  1. Aurelian, I. C.; Paschia, L., & Coman, M. D. (2019). Romanian Agriculture and
Sustainable Development. 11th LUMEN International Scientific Conference
Communicative Action & Transdisciplinarity in the Ethical Society. Targoviste,
Romania. 156-169. DOI: 10.18662/lumproc.108.

  2. Bănăduc, A. (2005). Study regarding Târnava Mare and Târnava Mică rivers
(Transylvania, Romania), Stonefly (Insecta. Plecoptera) larvae communities.
Transylvanian Review of Systematical and Ecological Research. 2. 75-84 .

  3. Bounoua, L.; DeFries, R.; Collatz, G.J.; Sellers, P.; Khan, H. (2002) Effects of land cover
conversion on surface climate. Climatic Change, 52, 29–64. DOI:
https://doi.org/10.1023/A:1013051420309.

  4. Burkepile, D. E., & Hay, M. E. (2008). Encyclopedia of ecology, five-volume set. In
C o r a l   r e e f s  ( p p .  7 8 4 – 7 9 6 ) .  e s s a y ,  E l s e v i e r  B . V .
https://doi.org/10.1016/B978-008045405- 4.00323-2.

  5. Castillo, C. P.; Kavalov, B.; Diogo, V.; Jacobs, C.; Batista, F. E. S.; Baranzelli C., &
Lavalle C. (2018). Trends in the EU Agricultural Land Within 2015-2030. JRC113717.
European Commission 2018. https://ec.europa.eu/jrc/en /publ icat ion /
ur-scientific-and-technical-research-reports/ rends-eu-agricultural-land-within-2015-2030



Levente Dimen, Tudor Borşan, Benjamin Gates18

  6. Climate-Data (n.d.). Crăciunelu de Jos Climate (Romania). Retrieved May 30, 2020,
from  https://en.climate-data.org/europe/romania/alba/craciunelu-de-jos-146942/

  7. Cros, M. M., Pop, A. M., & Popa, A. I. (2019). Vineyards and wineries in Aba county,
Rmania, towards sustainable business development. Sustainability (Switzerland), 11(15).
https://doi.org/10.3390/su11154036.

  8. Departmentul Pentru Dezvoltare Durabila/Department of Sustainable Development
(2015). Romania's Sustainable Development Strategy. http://dezvoltaredurabila.
gov.ro/web/about/

  9. Eastman, J.R. (2003) Guide to GIS and Image Processing 14, 239-247. Clark University
Manual, USA, Worcester, MA. Retrieved from: https://www.mtholyoke.edu/
ourses/tmillett/course/geog307/files/Kilimanjaro%20Manual.pdf

10. Elsheikh, R.;, Mohamed Shariff, A. R. B.;, Amiri, F.;, Ahmad, N. B.;, Balasundram, S.
K.;, & Soom, M. A. M. (2013). Agriculture land suitability evaluator (alse): a decision
and planning support tool for tropical and subtropical crops. Computers and Electronics
in Agriculture, 93, 98–110. https://doi.org/10.1016/j.compag.2013.02.003

11. Esri, Bauer, M.; Falloon, P.;, Betts, R. (2010) Climate impacts on European agriculture
and water management in the context of adaptation and mitigation – the importance of
and integrated approach. Science of The Total Environment. 408(23), 5667–5687. DOI:
https://doi.org/10.1016/j.scitotenv.2009.05.002.

12. Gao, J., & Liu, Y. (2010). Determination of land degradation causes in tongyu county,
northeast china via land cover change detection. International Journal of Applied Earth
Observations and Geoinformation, 12(1), 9–16. https://doi.org/10.1016/j.jag.2009.08.003

13. Gómez, C.;, White, J.C.;, Wulder, M.A. (2016) Optical remotely sensed time series data
for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote
Sensing, 116, 55–72. DOI: https://doi.org/10.1016/j.isprsjprs.2016.03.008.

14. Goodess, C.; D. Jacob, M.; Déqué, J.; Guttiérrez, R; Huth, E.; Kendon, G.; Leckebusch,
P.; Lorenz and V. Pavan, (2009). Downscaling methods, data and tools for input to
impacts assessments. In: ENSEMBLES: Climate Change and its Impacts: Summary of
Research and Results from the ENSEMBLES Project [van der Linden, P. and J.F.B.
Mitchell (eds.)]. Met Office Hadley Centre, Exeter, UK, pp. 59-78.

15. Google. (2020). [Map Coordinates for Crăciunelu de Jos, Romania]. Retrieved
18/05/2020 from https://www.google.com.au/maps/place/46%C2%B010'17.4%22N
+23%C2%050'10.0%22E/@46.1682039,23.8332136,16z/data=!4m5!3m4!1s0x0:
0x0!8m2!3d46.1715!4d23.8361?hl=en.

16. Gries, T.;& Redlin, M. (2019). Human-induced climate change: the impact of land-use
change. Theoretical and Applied Climatology, 135(3-4), 1031–1044. https://doi.org/
10.1007/s00704-018-2422-8.

17. HemaLatha, M.; Varadarajan, S. & Pandian, Durai. (2019). Feature enhancement of
multispectral images using vegetation, water, and soil indices image fusion. In
Proceedings of the International Conference on ISMAC in Computational Vision and
Bi o-E n g i n e e r i n g  2018 ,  (pp .  329–337) .  DOI :  h t t ps : / / doi . or g /
10.1007/978-3-030-00665-5_34.

18. Herold, M.; Mayaux, P.; Woodcock, C.; Baccini, A.; Schmullius, C. (2008). Some
challenges in global land cover mapping: An assessment of agreement and accuracy in
existing 1 km datasets. Remote Sensing of. Environment, 112, 2538–2556. DOI:
https://doi.org/10.1016/j.rse.2007.11.013.

19. Huete, A. R. (2004). Remote Sensing For Environmental Monitoring. In Brusseau, M.
L, Environmental Monitoring and Characterisation, (pp 183-206). Tucson. Arizona:
Elsevier inc. https://doi.org/10.1016/B978-0-12-064477-3.X5000-0.



Land and use cover change assessment of an agricultural area in Romania 19

20. Jackson, T.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy P. &
Hunt R. (2004). Vegetation water content mapping using Landsat data derived
normalized difference water index for corn and soybeans. Remote Sensing of
Environment. 94(4), 475-482. DOI: https://doi.org/10.1016/j.rse.2003.10.021'

21. Jin, S.; Sader, S. A. (2005). Comparison of time series tasseled cap wetness and the
normalized difference moisture index in detecting forest disturbances. Remote Rensing
of Environment. 94(3), 364-372. DOI:  https://doi.org/10.1016/j.rse.2004.10.012.

22. Kjellström, E.; G. Nikulin, U.; Hansson, G.; Strandberg, and A. Ullerstig, (2011). 21st
century changes in the European climate: uncertainties derived from an ensemble of
regional climate model simulations. Tellus A, 63A(1), 24- 40, doi:
10.1111/j.1600-0870.2010.00475.x

23. Le, H. T.; Rochelle-Newall, E.; Ribolzi, O.; Janeau, J. L.; Huon, S.; Latsachack, K. &
Pommier, T. (2020). Land use strongly influences soil organic carbon and bacterial
community export in runoff in tropical uplands-. Land Degradation & Development,
31(1), 118–132. https://doi.org/10.1002/ldr.3433,

24. Mărculeţ, I. & MărculeţS C. (2017). Crăciunelu de Jos (judeţul Alba) denumiri
geografice locale 1. Pangeea, 124-130, 124–130. https://doi.org/10.29302/Pangeea17.20.

25. McCarthy, M. J.; Colna, K. E.; El-Mezayen, M. M.; Laureano-Rosario, A. E.;
Méndez-Lázaro, P.; Otis, D. B.; … Muller-Karger, F. E. (2017). Satellite remote sensing
for coastal management: a review of successful applications. Environmental
Management -New York-, 60(2), 323–339.

26. Moon, T.; Ahlstrøm, A.; Goelzer, H. et al. Rising Oceans Guaranteed: Arctic Land Ice
Loss and Sea Level Rise. Curr Clim Change Rep 4, 211–222 (2018).
https://doi.org/10.1007/s40641-018-0107-0

27. National Institute of Statistics. (2017). Romania Regiuni Boundaries 2017. [feature
service]. Retrieved from: https://www.arcgis.com/home/item.html?id=c95580efef5848
d1bd41682cb9f1d17b  Natura 2000, (2019). [ROSCI0382, Râul Târnava Mare între
Copşa Mică şi Mihalţ, Standard Data, Standar data form]. Retieved from
http://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=ROSCI0382&release=10.

28. Nelson, G. C.; Valin, H.; Sands, R. D.; Havlik, P.; Ahammad, H.; Deryng, D., …
Willenbockel, D. (2014). Climate change effects on agriculture: economic responses to
biophysical shocks. (special feature: economic sciences: agricultural sciences).
Proceedings of the National Academy of Sciences of the United States, 111(9), 3274.

29. Parmentier, B.;Eastman, J.R. (2014). Land transitions from multivariate time series:
Using seasonal trend analysis and segmentation to detect land-cover changes.
International Journal of Remote Sensing. 35(2), 671–692. DOI: https://doi.org/
0.1080/01431161.2013.871595.

30. Rhman, S.;Mesev, V. (2019). Change Vector Analysis, Tasseled Cap, and NDVI-NDMI
for Measuring Land Use/Cover Changes Caused by a Sudden Short-Term Severe
Drought: 2011 Texas Event. Remote Sens. 11(19), 2217. DOI:
https://doi.org/10.3390/rs11192217.

31. Richards, J. A. (2014). Remote sensing digital image analysis: an introduction (5., th ed.
2013). Springer Berlin. 

32. Sexton, J.O.; Urban, D.L.; Donohue, M.J.; Song, C. (2013). Long-term land cover
dynamics by multi-temporal classification across the Landsat-5 record. Remote Sensing
of Environment. 128, 246–258. DOI: https://doi.org/10.1016/j.rse.2012.10.010.

33. Sima, M.; Popovici, E.; Bălteanu, D.; Micu, D.; Kucsicsa, G.; Dragotă, C.; Grigorescu,
I. (2015).  A farmer-based analysis of climate change adaptation options of agriculture



Levente Dimen, Tudor Borşan, Benjamin Gates20

in the Bărăgan Plain, Romania. Earth Perspectives. 2(5). DOI: https://doi.org/10.1186/
s40322-015-0031-6.

34. Thornton, L. E.; Pearce, J. R.; & Kavanagh, A. M. (2011). Using geographic information
systems (GIS) to assess the role of the built environment in influencing obesity: a
glossary. International Journal of Behavioral Nutrition and Physical Activity, 8(1),
71–71. https://doi.org/10.1186/1479-5868-8-71

35. Trenberth, K. (2011). Changes in Precipitation with Climate Change. Climate Change
Research. Climate Research. 47. 123-138. DOI: 10.3354/cr00953.

36. Trenberth, K. E. (2018). Climate change caused by human activities is happening and
it already has major consequences. Journal of Energy & Natural Resources Law, 36(4),
463-481. http://dx.doi.org.ezproxy.ecu.edu.au/10.1080/02646811.2018.1450895.

37. Turner, B. L. II; Lambin, E. F. & Reenberg, A. (2007). The emergence of land change
science for global environmental change and sustainability. Proceedings of the National
Academy of Sciences of the United State of America. 104(52), 20666–20671. DOI:
https://doi.org/10.1073/pnas.0704119104.

38. Turnock, D.; Vasile, C. S.; et al., (2020). Romania. Encyclopædia Britannica.
Encyclopædia Britannica, inc. Retrieved from https://www.britannica.com/
place/Romania/ Agriculture-forestry-and-fishing.

39. Vogel, M. M.; Zscheischler, J.; Wartenburger, R.; Dee, D. & Seneviratne, S. I. (2019).
Concurrent 2018 hot extremes across Northern Hemisphere due to human induced
climate  change. Earth's Future, 7, 692– 703. https://doi.org/10.1029/2019EF001189.

40. Wechsler, S.; Hyowon, B. & Li, L. (2019). The Pervasive Challenge of Error and
Uncertainty in Geospatial Data: Volume Eight. Advanced Computing and Systems for
Security, 315-332. DOI: 10.1007/978-3-030-04750-4_16.

41. Williams, H.; Baartman, J.; McLelland, S.; Murphy, B.; Parsons, D. & van der Ploeg, M.
(2019). Investigating the role of sediment type, rainfall event sequence and vegetation
cover on surface water flow and erosion patterns using a physical model. In Geophysical
Research Abstracts (21).

42. World Bank Group; Climate Change Knowledge Portal [web]. (2020). Romania. Climate
data > Historical. Accessed 02 June 2020 from: https://climateknowledgeportal.
worldbank.org/country/romania/climate-data-historical.

43. Yang, W.; Wang, Y.; He, C.; Xingyan, Tan, X.; & Han, Z. (2019). Soil Water Content
and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous
Measurement from the Agricultural Pastoral Ecotone in Northwest China. Sustainability,
11(15), 1-14. DOI: 10.3390/su11154188.


