
DOI: 10.29302/Pangeea 22.20 Social

VIRTUAL REALITY GAME DEVELOPMENT AND OPTIMISAION WITH
EXTERNAL HAND MOTION SENSOR 

Stud. ERIK DOBRA; Consultant: Dr. ÉVA NAGYNÉ HAJNAL
Óbuda University Alba Regia Technical Faculty, Hungary

SUMMARY: Virtual reality is an environment simulated by a computer that you can
interact with. VR replaces reality with an imaginary world that can be seen through a special
head-mounted device (HMD). In this environment, hand tracking is an important task. Many
devices do not have this functionality or it is not sufficiently accurate. It is common that hand
motion tracking is designed to follow a special hand controller, whereas many applications
would require the use of someone's own hand.

In this paper I would like to demonstrate the addition of a hand recognition device to VR
glasses. In the assignment I added a leap motion sensor to a pair of Windows Mixed Reality
VR glasses, which allows hand tracking without a hand controller. The implemented solution
was tested in a sample application. The theme of the game is horror, which encourages the
player to react quickly. I used an alternative implementation of moving in virtual space in
the application. The development of the control unit redesigned for virtual space was done
in a Unity based project. The system allows players to perform specific gestures using the
thumb and index finger, specifically to press buttons. I evaluated the software using the
built-in profiling system, which shows what future optimizations are possible within the
project. In summary, we have succeeded in creating a hand recognition system that tracks
accurate hand movements in real time, which is a significant improvement in hand
recognition implementation compared to the driver produced for the system.

Keywords: VR; Virtual Reality; Hand Gesture sensor; Leap Motion;

1. Introduction, Objective

My goal was to create a VR game that
was both fun to use and has the potential to
open up new ways for users to use handheld
interactions and in-game movement. I chose
virtual reality as a topic because this sector is
currently at a turning point. I looked at the
problem from a developer's point of view:
how can I create software that meets the
needs using specific hardware, how difficult
is it, how can it be done. Bringing our limbs
into the virtual space is a stepping stone to
this, but not the last. 

I must add, of course, that the
ever-changing implementation of virtual
reality has its place in many areas, not only
in the entertainment industry, but can also

benefit many other industries in the field of
simulation: we know of applications in the
hazardous or heavy industry from our studies
today. There is a possibility that my system
could be used for other industries, such as in
heavy-duty work simulations1, or with
patients with recovering sensing abilities2.

I also add that there is an increased
tendency for people to stay more and more
indoors (specifically because of the current
health situation3) and consequently people
are looking for ways to break away from
everyday reality, so there is an increased
willingness to connect to virtual reality4.
That's how I got my first VR devices, which
then pushed me forward.

Within the game, subtle hand movement
tasks have been implemented, such as



Virtual reality game development and optimisaion with external hand motion sensor 157

controlling a console, which presents the
player with tasks. It was also created three
different ways to control the game. The
comparison of these is shown on a learning
curve. To test the stability I used the profiler
provided by the development environment.
 

2. Game concept

Knowing what tools I would be able to work
with, I tried to create a game plan. My first
idea was a virtual library, but it turns out
that similar things had already been created5,
and the scope for its development is quite
given (and narrow). I also thought about
holding social events in virtual reality, but
events that require complex senses, such as
wine tastings or festivals where you can't
virtualise the touch of others or the taste of
wine - I felt we were not yet at the point
where this could be created virtually and
seamlessly.

My final idea was a kind of adventure
course and a random maze became my final
decision. 
 The theme was intended to have some
horror content to encourage the player to
complete the game. I have devised a way to
make the game generate a random path, so
that every time you try, you will find yourself
facing a new challenge. The rules of the
game are the next.
  • Player runs away from a scary character,

if he gets caught, it's game over, 
  • on the other hand, the game should

challenge the player in some way, and
the game control and interactions should
implement some kind of rethought
technique. I thought that a scary
character with a phobia of my own and
many other people was a good idea, so I
chose the arachnophobic character, the
spider. 

  • I also decided in time that the player
should have three lives, because I want
the player to be able to focus on the tasks,
balancing the fear factor and the task
solving within the game.

  • To make sure that not only one person
can play the game, a stopwatch was
implemented, which is timed to end
when the player completes the game, so
that players can compete against each
other. 
Of course, as it's a random track

generation game, the fastest players will be
those who know the game and can play with
a sense of purpose, although luck also plays
a small part, as it's faster to complete a track
that's straighter and doesn't require a lot of
searching for elements of the task.

3. Determination of alternative
movement

Meta’s Oculus Quest was the only VR
device that included rudimentary hand
recognition, but it was not feasible to develop
with it, and even its accuracy is not up to the
level of other devices, more specifically Leap
Motion guarantees millimetre accuracy6

while the Quest and Quest 2 only come close.
The only drawback of the Leap Motion is its
field of view compared to the Quest, but
that's plenty to provide a decent VR
experience7. 

After considering the Leap Motion
control unit, I thought about implementing it
first and foremost, but that required
physically connecting the Leap Motion to the
head unit. Based on the manufacturer's
recommendation, I mounted the Leap
Motion in the middle of the front of the
HMD and designed an adapter to mount it,
according to the manufacturer's website8 and
then modelled it in Fusion 360. I drew a
frame around the model and then cut out the
port location (fig. 1). Along the frame, I
made two bumps on each side, and then
created a support element to fit the curve of
the VR Headset, which fits at the points of
the bumps to ensure it is held in place. 

All this was done in Ultimaker Cura,
which implements the printing mesh for the
model. The elements were then printed (fig.
2).



Erik Dobra158

After that I had to plan what kind of
cases, VR features could be implemented if
you use your own hands in the virtual space
(fig. 3).

ATM-like models were created with
buttons on them. The question is whether
fingers can be recognised and interacted
with. Next to the buttons, I have also placed
sliding cubes that need to be dragged to
continue the game. 

During testing, I found that if the height
was set correctly when the VR HMD was
first used, it was quite pleasant and
user-friendly to use these elements. If the
height was not set correctly, it was not
possible to reach the console. If it wasn't set
correctly (for example, the ATM was too big
compared to the user), then you had to reach
up above the user's head, then the Leap
Motion hand recognition sensor started to
get unstable and didn't register button
presses properly.

There is also a life level indicator system
(fig. 4) that monitors the rotation of the
carpal bones on the left arm and appears
when you turn your palm towards you. The
player has three lives, and this is indicated to
the player here. 
  

4. Alternative solutions for virtual
movement guided by hand gestures

a. Control by wrist movement. In order
to capture a movement (motion capture), we
need to have sensors to determine the
direction and state of the body.

The primary problem was the global/local
north point assignment. Which sensor will
tell me which way I am looking, "which way
is north"? Unfortunately Leap Motion doesn't
have any sensors that could help me, I might
have been able to with optical motion
detection, but that would have been a very
resource intensive task.

Fig. 2. Printed Leap Motion holder from different angles

Fig. 1. Modelling in Fusion 360 software



Virtual reality game development and optimisaion with external hand motion sensor 159

The basic idea of where to place trackers
(sensors that transmit motion and direction)
is to look for four positions9:
  - Head-tracking-Head movement detection
  - Hand-tracking-Hand movement detection
  - Hip-tracking - hip movement detection
  - Leg-tracking - foot detection.

The HMD Headset is supposed to be a
good solution, but there's a problem with that
too. Unfortunately, Unity does not support
the integration of dynamic north point
selection when using these two devices at the
same time, and no matter how I tried to get
to the bottom of the problem, I always ended
up with the same issue.

On the other hand, I also thought about
trying the one developed by HTC Vive
Tracker, which can transmit data when
attached to the player. Unfortunately, I
quickly abandoned this idea when I found
out how much it would cost to build, as these
devices only work with Base Station. The
Base Station actually works by constantly
flooding the room with invisible light. The
receptors of the devices to be monitored pick
up the light emitted and from that you can
tell where they are in relation to the Base
Stations10.

At first, I thought that the relative
movement would be the difficulty in the

Fig. 3. Interactive buttons within the game

Fig. 4.: Life indicator fitted to wrist movement



Erik Dobra160

game due to the lack of a global north point,
but I soon found that it was very difficult to
get used to this movement pattern. Later a
combination of the two control principles
(joystick and hand recognition) were used.

b. Magicsee R1 controller. The first, in
which I used a tiny Magicsee R1 joystick
ring. This ring has an analogue lever that
can be hidden on the inside or outside of the
hand, which doesn't interfere with hand
recognition, so it retains the advantage of
both worlds, which is its own speciality. Fine
hand movement can still be used to solve
in-game tasks, but movement is handled by
the joystick and headset.
This is a safe approach to the problem that
will ensure proper, guaranteed operation.

c. Virtual VR keystrokes with hand
recognition. Another, more daring
approach, which is not provided by the
vendors, is to push the boundaries of the
framework with our own implementation. As
some elements are not implemented in the
Unity development environment, situations
similar to improvisation have arisen in one
or two places.

Here's how it works:
If the player extends the thumb and index

finger (forming a pistol) with both hands, a
script is activated, which results in a virtual
keystroke (in my case ‘W’) (fig. 5).

A keystroke will force the virtual
keyboard to move forward, and then you can
use the north point of the headset to move
forward. If one of your hands is no longer
showing the gesture, the forward progress
will stop. 
It is important to note, once again, that this
solution is not native, it is not feasible by
default in the current development
environment, but it is representative of what
this build would be capable of. For me, this
was important to point out because it was
conceptually suitable, but a solution that
could affect the stability of the computer
would not be considered as final (in my case,
virtual keystrokes meant that even if I
minimized the program, it still monitored the
hand movements and guaranteed keystrokes
outside the program).

5. Comparative analysis of manual
motion control methods

I have compared the learning curves of
the above-mentioned solutions in a
non-representative compilation that I have
experienced. The three different locomotion
technologies I implemented were compared
using the timer used in the game. Each
successful run was recorded, measured and
recorded in ‘table 1’, rounded to minutes for
simplicity. The 25 runs of each type were
normalised to show the performance that can
be achieved with these three types of
movement. The following is the formula for
the calculation:

where:
x_i= the actual measured value
  n = the set with the smallest interval and

the smallest variance
In each case, I played the game 25 times

to illustrate the potential for improvement.
As the figure above shows, the most difficult
movement technique to learn was the wrist
movement based one, which made it evenFig. 5. Activating hand gesture

illustration



Virtual reality game development and optimisaion with external hand motion sensor 161

more difficult to learn due to the lack of
dynamic north point selection mentioned
above. The joystick controller solution is the
most effective, but it still does not give up
the idea of having empty hands, so the
golden mean is the ‘fingergun’ method,
which is more difficult to learn than joystick
ring, but guarantees similar results.

6. Game optimisation, results,
opportunities

It was used different techniques to make
the VR gaming experience as optimal as
possible for everyone. To evaluate software
problems, I used a profiler built into the
Unity development environment11. This
mainly shows, in frames, what activity/
processes the machine is currently
processing. Here you can analyse outliers to
make the game run as smoothly as possible,
without slowdown-causing processes.

Occlusion culling is the first problem that
I had to solve (fig. 7).

Green: rendering, Blue: scripts, Orange:
physics simulation, Turquoise: animation.

As the graph shows, in the first versions
of the game, the experience was poorly
optimised and the game often stalled, as
shown by the jagged edges on the graph. The

value in green is the rendering, which means
that most of the resources are needed to
render the image. The edges may indicate
that looking in a direction where there are
several game elements, processing them
could put a sudden load on the machine, so
there were elements to process on the track
that the program was taking into account
even when you were not near (or not looking
at) them.

The solution to this is tricky within Unity
because I knew that I had to implement some
kind of occlusion culling. Unfolding this,

Fig. 6.  Learning curve I have experienced.

Fig. 7: Unity profiler graph for the 0-8 ms interval



Erik Dobra162

what it does with our program is that
things/textures that the player can't see are
ignored and rendered inactive. It is
important to note that if there is dynamic
content on the map (such as an enemy that is
moving), it must be marked within the
program not to be affected by this procedure,
otherwise it can freeze that entity until the
player has a view of it.

The problem with this is that Unity likes
to ‘bake’ this data into the program, so it
knows what it does and does not apply to
before the program is run. The objects in my
program are generated dynamically at
runtime, so Unity has no idea what kind of
elements can be cleaned from the player.

I have created a simple algorithm for
this:

Take the player, place an invisible,
translucent brick body (collider) on top of it,
and scale it up to a larger size. This will be
our ‘line of sight’. Anything that physically
collides with this brick will be displayed,
anything else that is not marked as dynamic
will not be displayed.

This solution works, but I should add that
if you are in an open space, you may see gaps
in the texture on the horizon. To remedy
this, I blurred the space further away so that
it's not so distracting. 

Leap Motion integration:
The next optimization I did was with the

Leap Motion integration itself. When one
starts developing for a VR device in Unity,
basically the OpenVR base should be marked
as an option, this has the advantage of
compatibility, but it severely limits the
hardware in both functionality and
responsiveness.

Contrary to everything, I turned off this
compatibility layer and manually integrated
the SDKs' content and found that the
response time of the hardware was much
shorter than if I had left it to the
development environment.

I did a measurement using both internal
and external footage of how instantly each of
the two methods responded to the original

camera-adjusted image. I set the camera and
internal footage to 240 FPS and compared
the values to the native visualizer and to each
other.

As the figure above shows, we have
managed to create a near-native
implementation compared to what OpenVR
guaranteed. The combination of these two
solutions has resulted in a well-functioning,
stable and optimised game. The profiler also
now presents a much smoother and higher
frame rate game.

Possibly, new challenges could be
associated with the new characters, so even
refining recognition, perhaps recognizing
new hand gestures, could be a possible
development point.

7. Conclusion

My goal was to solve the problem of
using hands in the VR environment,
replacing handheld controllers. The choice of
topic was motivated by the fact that there are
many applications where this might be
necessary. This was supported by the
literature research, but it is not solved in
many HMD devices. Where it is solved, the
accuracy of hand tracking and gesture
recognition typically leaves something to be
desired. As part of this experiment, I tested
several devices and selected a hand
recognition device, the Leap Motion sensor,
to pair with my existing VR glasses. To fit it
together, A 3D printed mounting element

Fig. 8: Leap Motion response time with
different implementations.



Virtual reality game development and optimisaion with external hand motion sensor 163

secured the device. I reviewed the literature
to see what options were available if we
could incorporate the hand recognition
device for in-game movement and
interaction. I then implemented a virtual
console that could be controlled by buttons
and a special display that worked based on
gesture evaluation. I implemented 2+1
separate types of solutions for controlling
spatial movement and compared their
usability. I created a game that randomly
generated   a   maze   and   included   all  the

features I developed. I tested the application
to see how stable it is using a profiler and
then optimized it. I investigated which SDK
would give the best results and developed a
simple occlusion culling algorithm that could
be used in VR. Based on my tests, I was able
to implement a low-latency hand recognition
algorithm, which is a beneficial
improvement over the built-in compatibility
layer. As an extension, I proposed additional
new program features that could have
specific behaviours. 

Notes

1. F. Nainggolan, B. Siregar, and F. Fahmi, “User Experience in Excavator Simulator Using
Leap Motion Controller in Virtual Reality Environment,” in Journal of Physics:
Conference Series, vol. 1566 (Institute of Physics Publishing, 2020),
https://doi.org/10.1088/1742-6596/1566/1/012093.

2. D. E. Holmes et al., “Using Fitt’s Law to Model Arm Motion Tracked in 3D by a Leap
Motion Controller for Virtual Reality Upper Arm Stroke Rehabilitation,” in Proceedings
- IEEE Symposium on Computer-Based Medical Systems, vol. 2016-August (Institute of
Electrical and Electronics Engineers Inc., 2016), 335–36, https://doi.org/10.1109/-
CBMS.2016.41.

3. Ravi Pratap Singh et al., “Significant Applications of Virtual Reality for COVID-19
Pandemic,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews 14, no. 4
(July 1, 2020): 661–64, https://doi.org/10.1016/J.DSX.2020.05.011.

4.  “Coronavirus Sent Us Home. Will VR Bring Us Back Together? - Protocol — The People,
Power and Politics of Tech,” accessed November 10, 2021, https://www.protocol.com/-
vr-headset-future-of-work.

5. Thumm’ ’Jean-Luc and McAvoy’ ’Scott, “GeiselVR,” April 12, 2018.
6. Chaowanan Khundam et al., “A Comparative Study of Interaction Time and Usability of

Using Controllers and Hand Tracking in Virtual Reality Training,” Informatics 8, no. 3
(September 1, 2021), https://doi.org/10.3390/informatics8030060.

7. “Leap Motion Hand Tracking vs Oculus Quest One vs Vive One | PaleBlue,” accessed
November  10,  2021,  h t tps: / /pale.blue/2020/07/09/leap-motion-hand-
tracking-vs-oculus-quest-one-vs-vive-one/.

8. “Tracking | Leap Motion Controller | Ultraleap,” accessed November 10, 2021,
https://www.ultraleap.com/product/leap-motion-controller/.

9. “Welcome to Steamworks,” accessed May 11, 2022, https://partner.steamgames.
com/vrlicensing.

10. Base Stations & VR Arcades. The Basics, The Do’s, and The Don’ts | by SpringboardVR
|Medium,” accessed December 2, 2021, https://medium.com/@springboardVR/
base-stations-vr-arcades-1dffac2abf05.

11. “Unity - Manual: Profiler Overview,” accessed November 10, 2021,
https://docs.unity3d.com/Manual/Profiler.html.



Erik Dobra164

References

  1. ’Jean-Luc, Thumm’, and McAvoy’ ’Scott. “GeiselVR,” April 12, 2018.
  2. “Base Stations & VR Arcades. The Basics, The Do’s, and The Don’ts | by

SpringboardVR | Medium.” Accessed December 2, 2021. https://medium.com/
@springboardVR/base-stations-vr-arcades-1dffac2abf05.

3. “Coronavirus Sent Us Home. Will VR Bring Us Back Together? - Protocol — The
People, Power and Politics of Tech.” Accessed November 10, 2021.
https://www.protocol.com/vr-headset-future-of-work.

4. Holmes, D. E., D. K. Charles, P. J. Morrow, S. McClean, and S. M. McDonough. “Using
Fitt’s Law to Model Arm Motion Tracked in 3D by a Leap Motion Controller for Virtual
Reality Upper Arm Stroke Rehabilitation.” In Proceedings - IEEE Symposium on
Computer-Based Medical Systems, 2016-August:335–36. Institute of Electrical and
Electronics Engineers Inc., 2016. https://doi.org/10.1109/CBMS.2016.41.

  5. 5Khundam, Chaowanan, Varunyu Vorachart, Patibut Preeyawongsakul, Witthaya Hosap,
and Frédéric Noël. “A Comparative Study of Interaction Time and Usability of Using
Controllers and Hand Tracking in Virtual Reality Training.” Informatics 8, no. 3
(September 1, 2021). https://doi.org/10.3390/informatics8030060.

  6. “Leap Motion Hand Tracking vs Oculus Quest One vs Vive One | PaleBlue.” Accessed
November 10, 2021. https://pale.blue/2020/07/09/leap-motion-hand-tracking-vs-oculus-
quest-one-vs-vive-one/.

  7. Nainggolan, F., B. Siregar, and F. Fahmi. “User Experience in Excavator Simulator
Using Leap Motion Controller in Virtual Reality Environment.” In Journal of Physics:
Conference Series, Vol. 1566. Institute of Physics Publishing, 2020.
https://doi.org/10.1088/1742-6596/1566/1/012093.

  8. Singh, Ravi Pratap, Mohd Javaid, Ravinder Kataria, Mohit Tyagi, Abid Haleem, and
Rajiv Suman. “Significant Applications of Virtual Reality for COVID-19 Pandemic.”
Diabetes and Metabolic Syndrome: Clinical Research and Reviews 14, no. 4 (July 1,
2020): 661–64. https://doi.org/10.1016/J.DSX.2020.05.011.

10. “Tracking | Leap Motion Controller | Ultraleap.” Accessed November 10, 2021.
https://www.ultraleap.com/product/leap-motion-controller/.

11. “Unity - Manual: Profiler Overview.” Accessed November 10, 2021.
https://docs.unity3d.com/Manual/Profiler.html.

12. “Welcome to Steamworks.” Accessed May 11, 2022. https://partner.steamgames.com/
vrlicensing.

Acknowledgement
The research was supported by the NTP-HHTDK-21-0024 grant.

 


