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ABSTRACT: Forest models are becoming essential tools in forest research, management, and
policymaking but are currently under deep transformation. In this review of the most recent literature
(2018–2023),  I analysed an updated general view of the main topics currently attracting the efforts
of forest modellers, the trends already in place, and some of the current and future challenges the field
will face.

Four major topics attracting the most of current modelling efforts: data acquisition, productivity
estimation, ecological pattern predictions, and forest management related to ecosystem services
Although the topics may seem different, they all converge towards integrated modelling approaches
by the pressure of climate change as the major coalescent force, pushing current research efforts into
integrated mechanistic, cross-scale simulations of forest functioning and structure.

I analysed that forest modelling is experiencing an exciting but challenging time, due to the
combination of new methods to easily acquire massive amounts of data, new techniques to statistically
process such data, and refinements in mechanistic modelling that incorporate higher levels of
ecological complexity and breaking traditional barriers in spatial and temporal scales. 

However, new available data and techniques are also creating new challenges. In any case, forest
modelling is increasingly acknowledged as a community and interdisciplinary effort. 
As such, ways to deliver simplified versions or easy entry points to models should be encouraged to
integrate non-modeller stakeholders into the modelling process since its inception. This should be
considered particularly as academic forest modellers may increase urban forest models' ecological and
mathematical complexity. The Geographical axis system includes cities in Mures and Bistriţa-Năsăud
counties. Cities in Mures: Târgul Mureş-Reghin-Luduş, in Bistriţa-Năsăud:
Bistriţa-Beclean-Năsăud-Sângeorz-Băi.   
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1. Introduction

Forests are one of the most complex
ecosystems on Earth’s biosphere, as they host a
large proportion of terrestrial biodiversity and
exist at the interface between the atmosphere and
the pedosphere. in addition, forests are defined as
such because the dominant organisms are
long-lived trees. After all, the dominant organisms
are long-lived trees immobile individuals that are
usually large (.Mendoza, G.A.,1999). 

These features allow forests to develop
specific spatial and temporal structures that
directly influence how the ecosystem functions
(i.e., nutrient, water, and energy cycles, gene
flows, population, and successional changes). All
this natural complexity poses a true challenge for
representing forest structure and functioning in

scientific and technical studies and science-based
management. (Kimmins JP et all,2008)
Traditionally, forest models have focused on the
dominant organisms (trees) and how they grow,
survive, and are distributed (Berzaghi F et, all,
2018).

This approach has been dominant since the
beginning of early quantitative forestry in the
eighteenth century. However, for the last few
decades, it has been well-known that
understanding how trees function is not enough to
understand how forests function, as other forest
components (understory, wildlife, soil, and
microbial communities) also influence trees.
Hence, forest models have constantly evolved to
incorporate some of the forests’ complexity into
their algorithms to produce the estimations that
model developers consider necessary to meet their
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objectives.
The development of the first forest growth

simulator marked the beginning of a new
approach to estimating tree growth. Since then,
modelling has evolved from the data-based
approach of using statistical tools to transform
observed data (“empirical models”) into an
approach in which an understanding of causal
relationships between variables was added to
statistical relationships to predict variables of
interest (“process-based models”) (Daniel B.
Botkin et all, 1972).

Soon after, the advantages and disadvantages
of both approaches were identified (Battaglia M,
Sands PJ,1998) (Bugmann HKM et all,1996), and
to solve them, an intermediary approach was
proposed (Kimmins JP, et al.,2020). Since then,
forest models have evolved considerably, and in
the last few years, important technical
developments have revolutionized the forest
modelling field (Blanco JA, Améztegui A,
Rodríguez, 2020). An 'urban' system is a spatially
heterogeneous system, definitions, such as those
provided by (Jorgensen,1986), the Society of
American Foresters (Helms, 1988), (Konijnendijk
et al.,2006) and all focus on the comprehensive
nature of urban forestry, involving scientific,
management and planning activities planning, and
planning elements. In this article, I look at urban
forestry in a general way. In the literal sense,
"urban forestry" consists of two parts "urban" and
"forestry". 

Creating and managing urban forests to
achieve sustainability is the long-term goal of
urban foresters as well as elected officials,
business leaders, and citizens. (Clark et al.,1997)

The following the continuous increment of
computing power (Waldrop MM.,2016); the
development of new statistical methods
(Tredennick AT et al.,2021); the great expansion
in techniques for data acquisition such as LiDAR,
spectral, hyperspectral, thermal, or radar sensors
that can be applied at broad scales (Belward AS,
Skøien JO.,2015); or the development of
autonomous continuous measurement devices for
soil, vegetation, and atmospheric variables (Sethi
SS, et all., 2022). 

Therefore, this review aims to identify the
current points of interest in forest modelling that
capture most of the research efforts and to
produce a catalogue in which the urban forest
areas of the 7 cities analysed are listed as a
geographical axis.

2. Materials and methods

To give a cursive to the research carried out
the methods section is structured as follows:

2.1. Current Main Topics in Forest
Modelling. To identify the current trends in forest
modelling,  first I searched the Web of Science
database (https:// www. web of science. com/ wos/
woscc/ advanced- search)  for the years 2018 to
2023 using the terms “forest modelling,” “forest
function,” “forest distribution,” “forest
adaptation,” and “modelling forest function” (with
their alternative spellings) in the title and
keywords of documents. They identified a total of
4933 documents.

Among those, 154 papers were reviews of
different modelling topics. After papers that were
reviews of different modelling topics. After
screening for relevance, the selected review
papers used for our narrative review were reduced
to 79. In the second phase, to objectively identify
the most popular topics in the most recent
literature, we used the visualisation tool VOS
Viewer (Van Eck NJ, Waltman L,2011)  with a
database of 4933 documents to map the
relationships between their keywords.

However, the statistical term “random forests”
distorts documents with this term. As a result, we
retained the database (data not shown), I removed
the 2040 documents for keyword mapping with
VOS viewer v1.6.18 (Centre for Science and
Technology Studies, Leiden University, the
Netherlands, http:// www. vosvi ewer. com). I
limited the minimum number of occurrences for
each keyword displayed in the map to 30 (Fig. 1).

As a result, 20 different keywords were
selected. This search was not intended to be a
formal or in-depth quantitative review but merely
a way to gain unbiased and up-to-date insight into
current popular modelling trends.

As the main result of the keyword mapping, I
found the term “climate change” as the most cited.
Climate change also stood out in a central position
among all other terms. In addition, four different
clusters of terms were identified, with climate
change being the main connector among them.
The first cluster (in red in Fig. 1) could be
considered as built around quantitative
assessments of vegetation biomass (or carbon)
using remote-sensing techniques (either aerial or
terrestrial). 
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The second cluster (in yellow in Fig. 1) was
composed of the relationships between growth,
productivity, and climate. The third cluster (in
blue in Fig. 1) was limited to more technical terms
related to model building.

Finally, the fourth cluster (in green in Fig. 1)
was related to ecosystem services and
management, in combination with climate change.
Below, I discuss the main trends in each cluster in
the following sections, based on the 79 review
papers identified as relevant.

2.2 Contribution of urban forests to
sustainable development goals and forestry
strategy. It is used a methodological review is a
type of systematic secondary research (i.e.,
research synthesis) which focuses on summarising
the state-of-the-art methodological practices of
research in a substantive field or topic" (Chong et
al, 2021). 

This chapter reviews information on strategies
that set out a vision and concrete actions to
improve the quantity and quality of forests in the

EU and to strengthen their protection, restoration,
and resilience. It also looks at how urban forests
contribute to sustainable development goals

2.3. Use of Normalized difference
vegetation index (NDVI ) techniques in urban
forest analysis. In the simplest terms possible, the
Normalized Difference Vegetation Index (NDVI)
measures the greenness and the density of the
vegetation captured in a satellite image. Healthy
vegetation has a very characteristic spectral
reflectance curve which we can benefit from by
calculating the difference between two bands –
visible red and near-infrared. NDVI is that
difference expressed as a number – ranging from
-1 to 1.

NDVI of a crop or a plant calculated regularly
over periods can reveal a lot about the changes in
their conditions. In other words, we can use NDVI
to estimate plant health remotely.

The value drop can also correspond to normal
changes, such as the time of harvesting, which is
why NDVI should be counter-checked against

Fig. 1 Keyword map showing relationships between the 20 most common keywords in
documents related to forest modelling published on the Web of Science in 2018–2023 

Different lines and dot colours indicate different clusters of terms. The dot size is proportional to the
frequency of each keyword and the line thickness is proportional to the frequency of the co-occurrence

of connected keywords. Source: Realised by the author 
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other available data. Correct NDVI values
interpretation can help agronomists raise healthier
yields, save money on fertilizers, and take better
care of the environment.

NDVI is derived from satellite imagery and
calculated per the formula:

where:
NIR – light reflected in the near-infrared

spectrum;
RED – light reflected in the red range of the

spectrum;
According to this formula, the density of

vegetation (NDVI) at a certain point of the image
is equal to the difference in the intensities of
reflected light in the red and infrared range
divided by the sum of these intensities. NDVI
defines values from -1.0 to 1.0, where negative
values are mainly formed from clouds, water and
snow, and values close to zero are primarily
formed from rocks and bare soil. Very small
values (0.1 or less) of the NDVI function
correspond to empty areas of rocks, sand, or
snow.

Moderate values (from 0.2 to 0.3) represent
shrubs and meadows, while large values (from 0.6
to 0.8) indicate temperate and tropical forests.

Put simply, normalized difference vegetation
index is a measure of the state of plant health
based on how the plant reflects light at certain
frequencies (some waves are absorbed, and others
are reflected).(Figure2)

In the NDVI analysis of urban forests in the

geographical axis formed by 7 cities with
administrative extension on two bordering
counties Mureş and Bistriţa-Năsăud, the following
EOSDA Crop Monitoring from EOS DATA
ANALYTICS is a perfect tool for remote crop
health monitoring using NDVI. EOSDA Crop
Monitoring tracks changes in the NDVI for
individual fields throughout the season. Monitor
both the crop rotation patterns and the current
vegetation rates. With the help of user-friendly
graphs, the platform visualizes different types of
data, including vegetation indices, temperature,
precipitation rate, growth stages, historical
weather, and much more. 

Analysed period 2022-2023, Index values are
based on Sentinel-2 imagery with 50% or less
cloudiness.

3. Results 

To give a flow to the research carried out, the
results section is structured as follows:

3.1. Climate Change: the Main Driver for
Forest Modelling. It is not surprising that climate
change is at the centre of current forest modelling
efforts, a pattern already noticed in other recent
reviews (Gon alves AFA et. al,2021). This result
could just reflect the generalized wish of forest
researchers to link their work to the current
widespread scientific policies focused on
addressing climate change, but it could also
genuinely indicate the need for understanding how
complex systems such as forests will behave
under unknown climate conditions.

Fig. 2. Exposure vegetation condition analysis
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Climate change is being observed as a major
force behind many changes in current and future
forest environmental changes (Machado Nunes
Romeiro et al, 2022)( Prichard SJ et. al,2021). 

Such changes will affect in different ways the
key factors driving tree physiology, and therefore,
new modelling approaches need to disaggregate
climate influences on those drivers. Hence,
understanding the detailed effects of climate
change, alone or in combination with other major
drivers for change such as land-use change, or
biodiversity loss is the ultimate goal of much of
the current modelling effort.

The realisation of the first signs of climate
change and the need for early action in forest
management well in advance of other economic
sectors (due to the long-lived nature of trees) has
meant that for at least two decades, the need to
provide forest models with capabilities to simulate
climate change has been recognised. ( Mäkelä A
et al,2000)( Mahnken M et al, 2022)

Such need has meant that the use of simple
correlational models using traditional data from
permanent plots or inventories has long been seen
as inadequate among the scientific community for
climate change-related studies. However, such an
approach can be very suitable for other research
and management applications (Kimmins JP et.
al,2021). In addition, other models that had
implicit representations of climate, influences
have moved into explicit representations to keep
up with the knowledge demands on climate
change effects on forest systems from different
stakeholders (Crookston NL et. al,2010) ( Liu Y
et. al,2020) 

Nevertheless, for the successful
implementation of climate change simulation
capabilities into forest models, modellers need to
move beyond direct effects on temperature and
precipitation. 

For example, the scarce availability of models
able to link climate change with ecological
disturbances has been identified (Romeiro, JMN
et al,2022). Similarly, most regeneration
algorithms used in forest models do not capture
the effect of climate change (Hanbury-Brown AR
et al,2020). In any case, climate change must be
directly linked to modelling physiological
responses (e.g., phenology, photosynthesis,
respiration) and to the frequency and severity of
disturbances (fire, drought, insect outbreaks, etc.).

In turn, changes in these processes will also
affect other ecosystem processes (allocation,

allometry, growth at tree ecosystem processes
(allocation, allometry, growth at tree level,
biodiversity, and competition at the ecosystem
level), and therefore, simulating climate change
effects will indirectly be needed to improve how
such processes are modelled.

3.2. Remote Sensing and Biomass
Accounting. Biomass (in the form of timber,
firewood, cork, fruit, resin, charcoal, etc.) has
traditionally been the most important charcoal,
etc.) has traditionally been the most important
commodity obtained from forests. Therefore, it is
not surprising that the different ways to estimate
forest biomass and other closely related variables
(i.e., timber volume, carbon) are still among the
most important topics in current forest modelling
efforts (Fig. 1). Among them, modelling strategies
to sequester C stands out as one of the most
important topics. (Nunes LJR et al, 2019)

The large size and immobile nature of trees
allow individual features such as diameter and
height to be measured at different times over
extended periods. Such an inventory-based
approach can provide a wealth of data, but it
quickly becomes a cumbersome task when large
and diverse forest areas need to be assessed.

However, the explosive development of
remote-sensing techniques, the lowering prices of
unmanned aerial vehicles, and the continuous
growth in computing capabilities are generating
the ability to finally obtain a detailed assessment
of not only the basic population features but also
the structure and spatial distribution of individual
trees over large areas (Coops NC, et al, 2021).

A model convergence towards the tree scale
for meaningful C-cycle modelling, both from
upscaling more physiologically oriented models
and downscaling stand-level C accounting
models, has been noted (Babst F et al,2021).
However, not until very recently have researchers
looked for ways to incorporate structural diversity
into process-based models.

A detailed structural diversity into
process-based models. A detailed review of the
potential and limitations of using terrestrial laser
scanning to calibrate functional-structural plant
models is available (O’Sullivan et al,2021).

3.3. Process analysis and modelling. A
second main topic in current forest modelling
research is the development of new and refined
methodological is the development of new and
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refined methodological approaches, mostly
through the use of advanced mathematical
approaches, mostly through the use of advanced
mathematical or statistical tools or borrowing
them from other fields. 

New progress is made almost daily in deep
learning methods that are revolutionizing modern
ecology(Borowiec ML et al,2022).

These methods have great potential to improve
computationally costly tasks such as the
classification of information from remote sensing
or the simulation of interactions between
individuals in large forest areas. The use of these
advanced statistical techniques is greatly
expanding modelling capabilities to link research
done at multiple scales, simulate larger regions,
and incorporate dynamic changes at shorter
temporal scales (crucial for accurate C flux
modelling).

There is a dire need for tools that can provide
usable predictions for managers, as the forestry
sector needs to adapt to climate change even
earlier than other sectors, given the long-term
consequences of current management decisions
(Jandl R, Spathelf P, Bolte A,2019). Hence, using
techniques to simplify model use will undoubtedly
facilitate the generation of tools easy to interpret
and share with non-modellers, and that can be
easily compared with expert knowledge (Robinet
C et .al, 2020). 

This idea of simplification while retaining the
behaviour of complex process-based models is
behind the development of “model emulators”
(Lim TC,2021). Model emulators are built to
mimic the same outputs from complex (usually
process-based) models, with the m a i n
objective of reducing computing requirements.
This simplification allows for the integration of
the emulator into other modelling platforms (and
therefore connectivity with other models or
submodules different from the original
process-based model), to expand temporal and
spatial scales not reachable with the original
process-based models or to simplify interaction
with model users.

Hence, emulators could be valuable tools in
the future to understand ecological patterns at
large scales, particularly under novel ecological
conditions created by the combination of climate,
biodiversity, and land-use changes.

3.4. Modelling Forests Beyond Trees. While
tree growth and productivity are still important

topics, the largest cluster of research topics
identified was related to modelling forest
components other than trees.

Most of this research is based on a clear
understanding that for models to be able to handle
climate change effects, it is essential to include
more ecosystem components that historically have
received less attention. (Kimmins JP et al, 2021)
Further developments that mechanistically link
hydraulic conductance with physiology, growth
and mortality are taking place.( Venturas MD et
al, 2021) ( Brodribb TJ et al,2019)

How biodiversity is integrated into forest
models is another of the issues in this keyword
cluster traditionally there is a biodiversity bias
towards trees in forest models (Lõhmus A. et al,
2020). This is not surprising, as biodiversity
interactions (both animal and vegetal) in forests
are a complex and broad field that has not been
incorporated into models until relatively recently,
and that remains largely ignored in operational
models used in forest management. In this regard,
a lack of integration of modelling approaches at
different spatiotemporal scales has been identified
as a barrier to implementing biodiversity into
forest modelling (Morán-Ordóñez A.et al, 2018)

Similarly, calls for more attention to the role
of the understory in key ecological processes have
been raised (Landuyt D . et al,2018), even if early
examples of the importance of tree-understory
interactions when simulating commercial forestry
are available e.g., (Bi J et. al,2007). It is currently
advocated that the most efficient approach is to
use plant functional traits that can accommodate
the inherent complexity of understory
communities. 

To do so models the complexity of understory
communities. Models must have detailed time and
spatial scale to allow for the different Eco
physiological behaviours (many times resource
opportunistic) that understory species usually
display, particularly following disturbances
(Taylor BN  et al, 2017).

Other approaches to account for biodiversity
include the use of habitat and species distribution
models. They link the smallest (habitat) to the
largest (distribution) spatial scales and provide a
better understanding of the potential impacts of
novel ecological conditions over the mid to long
term.

The dramatic increase in available data on
climate, soils, and species distributions allows for
finely gridded modelling at both temporal and
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spatial scales. This advance allows statistically
based species distribution models to be linked to
process-based models (Maréchaux I. et al,2021)
although a better understanding of absence data
and improved inclusion of abiotic interactions
become crucial to estimating the effects of climate
change ( Booth TH., 2018) (Pecchi M et al,2019).

Important conceptual advances in
disaggregating disturbances into their constituent
components and embedding disturbances into
system dynamics have been recently completed
(Sturtevant BR, Fortin M-J., 2021). 

Important steps in making forest models more
meaningful for stakeholders include modifying the
way models are created. 

The focus is on participatory processes in
which model users and forest stakeholders interact
with forest modellers during the inception of the
modelling studies is being increasingly recognized
as fundamental for the model to make an actual
impact in the forest sector (Lim TC., 2021). 

This approach aims to bring non-academic
forest stakeholders into the process at the
beginning, so they develop a sense of ownership
of the research outcome and therefore are much
more likely to implement the model outcomes.
Three models for science-policy interaction have
been identified (Polidori L et al, 2022): the “linear
phase” when science-informed policymaking is in
a unidirectional manner, the “interactive phase”
when both sides find themselves in continuous
interaction, and the “embedded phase.”

The linear phase is still dominant in many
regions, with scientists developing models and
scenarios of their interest and then approaching
non-academic stakeholders with their results.
Only in some scarce cases the interaction has
progressed and moved into the second stage of
science-policy interaction (i.e., (Lim TC.,2021).
It is the time to push towards a multi-actor
approach (the second “interactive” phase of
bringing science into practice). However, to
achieve this goal, models need to be accessible,
relevant, and user-friendly for non-modellers and
address current forest management concerns to
bring change into forestry practices (Benson DL.
Et al, 2022).

A comparison of how different European
decision support systems face these challenges has
identified the need to incorporate forest owner
behaviour and accurate spatial analysis to better
estimate landscape-level provisioning of
ecosystem services. (Nordström EM.et L, 019)

3.5. Forest Policy Strategy and
Contribution of Urban Forests to Sustainable
Development Goals 

3.5.1 Forest Policy Strategy. Forests are
essential for our health, well-being, and the
planet's health. They are rich in biodiversity and
are hugely important in the fight against climate
change.

The new EU forest strategy for 2030 is one of
the flagship initiatives of the European Green
Deal and builds on the EU biodiversity strategy
for 2030. The strategy will contribute to achieving
the EU’s biodiversity objectives as well as a
greenhouse gas emission reduction target of at
least 55% by 2030 and climate neutrality by 2050.
It recognises the central and multifunctional role
of forests and the contribution of foresters and the
entire forest-based value chain for achieving a
sustainable and climate-neutral economy by 2050
and preserving lively and prosperous rural areas.
( h t t p s : / / e n v i r o n m e n t . e c .  e u r o p a . e u /
strategy/forest-strategy_en)

On 22 November 2023, The Commission is
proposing a Forest Monitoring Law that will plug
existing gaps in the information on European
forests and create a comprehensive forest
knowledge base, to allow Member States, forest
owners and forest managers to improve their
response to growing pressures on forests and
strengthen forest resilience (https://ec.europa.eu/
commission/ presscorner/detail/en/ip_23_5909).

Forests are an essential ally in the fight against
climate change and biodiversity loss and are
crucial for flourishing rural areas and the
economy. Unfortunately, Europe's forests suffer
from many pressures, including climate change
and unsustainable human activity. (https://
ec.europa.eu/commission/ presscorner/)

Better monitoring will enable action to make
forests more resistant to the cross-border threats
of pests, droughts and wildfires that are
exacerbated by climate change, enable new
business models such as carbon farming, and
support compliance with agreed EU legislation. 

Ultimately, it helps strengthen the capacity of
forests to fulfil their multiple environmental and
socio-economic functions, including their role as
natural carbon sinks (https://ec.europa.eu/
commission/presscorner/detail/en/  ip_23_5909)

3.5.2 Contribution of Urban Forests to
Sustainable Development Goals. Forests in and
around cities face many threats, such as those
posed by unregulated urban development and a
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lack of investment and management. Investment
in the establishment, protection and restoration of
urban forests can help create a healthy
environment, such forests are often appreciated
more for their aesthetic value than for their
ecosystem functions.

Mayors, planners, and other urban
decision-makers are often unaware of the crucial
economic, social, and environmental benefits that
urban forests can provide (Tab.1).

3.6. Model for Urban Forest Research in
Geographical Axis System using NDVI.
Illustration of index value between -1 and +1. of
urban vegetation analysed (Figure 3).  A higher or
more positive value indicates a higher vigour of
the plants and a better overall health status

Following the analysis for Bistrita the average
NDVI value is established between 0.05-02.
Isolated values of 0.85 (Fig. 4). 

Table No.1 Contribution of Urban Forests to Sustainable Development Goals
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Following the analysis for Beclean the average
NDVI value is established between
0.05-03/0,43-0,75. (Fig. 5).

Based on the analysis for Năsăud, the average
NDVI value is set between 0.20-0.10. Isolated
values of 0.30 are recorded (Fig. 6).

According to the analysis for Sângeorz-Băi,
the average NDVI value is set between 0.30-0.15.
Isolated values of 0.05 are recorded (Fig. 7). 

The NDVI values are analysed in the form of
Geographical Axis 1 Bistriţa-Beclean -Năsăud-
Sângeorz -Băi ( Fig. 8 ).
 From the analysis for Târgul Mureş, the
average NDVI is set between 0.45 and 0.35.
Isolated values of 0.50 are recorded (Fig. 9).

Based on the analysis for Luduş, the average
NDVI is set between 0.20-0.15. Isolated values of

0.05 are recorded (Fig.10).
From the analysis for Reghin, the average

NDVI is set between 0.45 and 0.30. Isolated
values of 0.15 are recorded (Figure 11).

The NDVI values are analysed in the form of
Geographical Axis 2 Târgul Mureş-Luduş
-Reghin ( Figure 12)

4. Discussion

4.1. Following challenges for the forest
model Convergence. Understanding how
complex ecosystems such as forests are structured
and function as a system has still been and will be
challenging. The challenge lies in understanding
how climate change affects forests, while our
understanding of how to model forests under
“normal” conditions is still far from complete. 

Fig. 3.  Illustration of NDVI Index applied 
Source: Realised by the author

Fig. 4. NDVI values for Bistri a 
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Fig.7  NDVI values for Sângeorz-Băi 
Source:  https://crop-monitoring.eos.com/analytics/field/9876197?period_from
=2022-02-04&period_to=2023-02-04&sceneID=S2B_tile_20230123_35TLN_0

Fig. 6. NDVI values for Năsăud
Source:  https://crop-monitoring.eos.com/analytics/field/9876192?sceneID =S2B

_tile_20230126_34TGT_0&period_from=2022-02-04&period_to=2023-02-04

Fig. 5. NDVI values for Beclean
Source:  https://crop-monitoring.eos.com/analytics/field/9876179?period_from=
2022-02-04&period_to=2023-02-04&sceneID=S2B_tile_20230123_34TGT_0
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Fig. 9.  NDVI values for Târgul Mure  
Source:  https://crop-monitoring.eos.com/analytics/field/9876296?period_from=
2022-02-04&period_to=2023-02-04&sceneID=S2B_tile_20230123_35TLM_0

Fig. 10. NDVI values for Luduş

Fig. 8. NDVI values in the Geographical Axis 1 
Source: Realised by the author 
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In addition to the most popular topics currently
being explored in forest modelling discussed
earlier, we have identified through our review
several topics that deserve mention due to their
relevance, even if they did not explicitly appear in
the keyword map in Fig. 1. Such topics include the
following:
   • Small forests: Landscapes around the globe are
becoming increasingly fractioned, making small
forests of increasingly fractioned, making small
forests of a few hectares or smaller increasingly
common. Managers of such forests usually have
limited resources to access and use models, and

models usually lack representations of external
factors (such as the vicinity of agricultural lands)
that can be relevant to the functioning and
structure of small forests;( Benson DL et al, 2022)
   • Urban forests: As urban landscapes expand;
urban forests are becoming very important in
delivering a multitude of ecosystem services.
However, urban forest models have been
developed only for a few regions around the
world (i.e., USA, Europe, and China) and are
mostly correlational. To better assess the effects
of climate change on ecosystem services, better
linkages with Eco physiological mechanisms must

Fig. 12.  NDVI values in the Geographical Axis 2
Source: Realised by the author

Fig.11  NDVI values for Reghin 
Source: https://crop-monitoring.eos.com/analytics/field/9876308?sceneID=S2B_tile_

20230123_34TGS_0&period_from=2022-02-05&period_to=2023-02-05
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be incorporated into urban forest models (Lin J et
al,2019). 

Among the potential ecosystem services that
could be modelled in urban forests are not only
carbon sequestration (Zheng J et al,2018) but also
aesthetic values (Mundher R et al,2022);
   • Overlooked physio-ecological processes:
Important mechanisms have attracted little
attention in the forest models until now. One is
regeneration (including masting), which is now
recognized as a process that can significantly
affect biomass allocation and hence carbon and
energy flows. 

Even if detailed conceptual models on forest
regeneration have been available for on forest
regeneration have been available for some time
(i.e., Blanco JA,2009), regeneration has usually
been oversimplified in forest models
(Hanbury-Brown AR et al,20229.

4.2 Analysis Comparison of NDVI values
between Geographical Axis 1 and Geographical
Axis 2. The NDVI values are analysed in the form
of  Geographical Axis 1 Bistriţa-Beclean -Năsăud
-Sângeorz -Băi and Geographical Axis 2 Târgul
Mureş-Luduş- Reghin (Figure 13).

5. Conclusion

A review of current trends in forest modelling
has shown that climate change is the main driving
force that is stimulating researchers to develop

new approaches and methods to model forest
ecosystems and forest managers to use such
models. It has also shown that we are at an
exciting moment, in which the development of
new statistical and measurement techniques is
finally creating opportunities for developing true
inter-scale models, from individuals to regions
and beyond. In addition, the present need to
incorporate users into the modelling process is
stronger than ever, and options exist to simplify
science-based models into operational models
without losing an accurate representation of
ecological patterns.

However, a need to better understand the
ecological process is also more important than
ever as climate, the process is also more important
than ever as climate, biodiversity, and land-use
change move forest ecology of the Earth to novel
conditions. Hence, improving the mechanistic
representation of ecological processes in an
integrative manner that moves beyond trees will
be crucial for meaningful predictions of the forest
ecosystem development under novel conditions.
In conclusion, I have shown that the  traditional
division  between  process-based and statistical
models lacks actual meaning, as the major trend is

towards cross-scale integration of different
modelling approaches. 

Application of Comparative NDVI analysis
between Geographic Urban Axis 1 and
Geographic Urban Axis 2. 

Fig.13 NDVI values for Urban Geographical Axis 1 and Urban Geographical Axis 2 
Source: Realised by the author



Analysing the latest trends in forest ecosystem modelling 131

References

  1. Berzaghi F, Verbeeck H, Nielsen MR, Doughty CE, Bretagnolle F, Marchetti M,
Scarascia-Mugnozza G., 2018. Assessing the role of megafauna in tropical forest ecosystems and
biogeochemical cycles - the potential of vegetation models. Ecography. p.41:1934–54. https:// doi.
org/ 10. 1111/ECoG. 03309.

  2. Battaglia M, Sands PJ., 1998. Process-based forest productivity models and their application in
forest management. For Ecol Manage. p.102:13–32. https:// doi. org/ 10. 1016/ S0378- 1127(97)
00112-6.

  3. Bugmann HKM, Yan X, Sykes MT, Martin P, Lindner M, Desanker PV, Cumming SG, 1996. A
comparison of forest gap models: model structure and behaviour. Clim Change. p;34:289–313.
https:// doi. org/ 10. 1007/ BF002 24640.

  4. Blanco JA, Améztegui A, Rodríguez F, 2020. Modelling forest ecosystems: a crossroad between
scales, techniques, and applications. Ecol Modell. P.425:109030. https:// doi. org/ 10. 1016/j. Ecol
model. 2020. 109030.

  5. Belward AS, Skøien JO, 2015. Who launched what, when and why; trends in global land-cover
observation capacity from civilian earth observation satellites. ISPRS J Photogram Rem Sensing.
p;103:115–28. https:// doi. org/ 10. 1016/j. isprs jprs. 2014. 03. 009.

  6. Babst F, Friend AD, Karamihalaki M, Wei J, von Arx G, Papale D, Peters RL, 2021. Modelling
ambitions outpace observations of forest carbon allocation. Trends Plant Sci. p;26(3):210–9.
https:// doi. org/ 10. 1016/j. tplan ts. 2020. 10. 002.

  7. Borowiec ML, Dikow RB, Frandsen PB, McKeeken A, Valentini G, White AE. Deep learning as
a tool for ecology and evolution. Methods Ecol Evol. 2022;13(8):1640–60. https:// doi. org/10.
1111/ 2041- 210X. 13901.

  8. Bi J, Blanco JA, Kimmins JP, Ding Y, Seely B, Welham C, 2007. Yield decline in Chinese fir
plantations: a simulation investigation with implications for model complexity. Can J For Res.
p;37:1615–30. https:// doi. org/ 10. 1139/ X07- 018.

  9. Brodribb TJ, Cochard H, Dominguez CR,2019. Measuring the pulse of trees; using the vascular
system to predict tree mortality in the 21st century. Cons Physiol. p;7:coz046. https:// doi. org/10.
1093/ conph ys/ coz046.

10. Benson DL, King EG, O’Brien JJ, 2022. Forest dynamics models for conservation, restoration, and
management of small forests. Forests.  https:// doi. org/ 10. 3390/ f1304 0515.

11. Booth TH, 2018, Species distribution modelling tools and databases to assist managing forests
under climate change. Forest Ecol Manag. p;430:196–203. https:// doi. org/ 10. 1016/j. forego
2018. 08. 019.

12. Clark, J.R., N.P. Matheny, G. Cross, and V. Wake., 1997. A model of urban forest sustainability.
J. Arboric.p. 23:17-30.

13. Chong, S. W., & Reinders, H, 2021. A methodological review of qualitative research syntheses in
CALL: The state-of-the-art. System, 103, 102646. 

14. Crookston NL, Rehfeldt GE, Dixon GE, Weiskittel AR., Addressing climate change in the forest
vegetation simulator to assess impacts on landscape forest dynamics. For Ecol Manage.
2010;260:1198–211. https:// doi. org/ 10. 1016/j. forego. 2010. 07. 013.

15. Coops NC, Tompalski P, Goodbody TRH, Queinnec M, Luther JE, Bolton DK, White JC, Wulder
MA, van Lier OR, Hermosilla T, 2021. Modelling lidar-derived estimates of forest attributes over
space and time: a review of approaches and future trends. Remote Sens Environ. https:// doi. org/
10. 1016/j. rse. 2021. 112477.

16. Daniel B. Botkin, James F. Janak and James R. Wallis, 1972. Some Ecological Consequences of
a Computer Model of Forest Growth, Journal of Ecology, Published By: British Ecological Society,
Vol. 60, No. 3, pp. 849-872 (24 pages).

17. Gonçalves AFA, Santos, JA, Fran a LCJ, Campoe OC, Altoé TF, Scolforo JRS, 2021. Use of the
process-based models in forest research: a bibliometric review. Cerne. https:// doi. org/ 10. 1590/
01047 76020 21270 12769.



Alexandu Marius Tătar132

18. Mary W. Helms, 1988. Ulysses' Sail: An Ethnographic Odyssey of Power, Knowledge, and
Geographical Distance, Series: Princeton Legacy Library, Published by: Princeton University
Press,p.210-219.

19. Hanbury-Brown AR, Ward RE, Kueppers LM, 2022. Forest regeneration within Earth system
models: current process representations and ways forward. New Phytol. p;235:20–40. https:// doi.
org/10. 1111/ nph. 18131.

20. Jandl R, Spathelf P, Bolte A, Prescott CE, 2019. Forest adaptation to climate change—is
non-management an option? Ann For Scie. p;6(2):1–13. https:// doi. org/ 10. 1007/ s13595- 019-
0827-x.

21. Kimmins JP, Blanco JA, Seely B, Welham C, Scoullar K, 2020. Forecasting forest futures: a
hybrid modelling approach to the assessment of the sustainability of forest ecosystems and their
values, Earthscan Ltd. London, UK. 281 pp. ISBN: 978–1–84407–922–3. https:// doi. org/ 10.
4324/ 97818 49776 431.

22. Cecil C. Konijnendijk , Robert M. Ricard , Andy Kenney , Thomas B. Randrup , 2006. Defining
urban forestry – A comparative perspective of North America and Europe, Urban Forestry &
Urban Greening, Volume 4, Issues 3–4,  p. 93-103./

23. Liu Y, Trancoso R, Ma Q, Yue C, Wei X, Blanco JA, 2020. Incorporating climate effects in Larix
gmelinii improves stem taper models in the Greater Khingan mountains of Inner Mongolia,
northeast China. Forest Ecol Manag. p;464:118065. https:// doi. org/ 10. 1016/j. forego. 2020.
118065.

24. Mendoza GA,1999. Ecological modelling in forestry. In: Environmental Geology. Encyclopedia
of Earth Science. Springer, Dordrecht. https:// doi. org/ 10. 1007/1- 4020- 4494-1_ 92.

25. Machado Nunes Romeiro J, Eid T, Antón-Fernández C, Kangas A, Trømborg E, 2022. Natural
disturbances risks in European boreal and temperate forests and their links to climate change a
review of modelling approaches. For Ecol Manage. p;509:120071. https:// doi. org/ 10. 1016/j.
forego. 2022. 120071.

26. Mäkelä A, Landsberg J, Ek AE, Burk TE, Ter-Mikaelian M, Ågren GI, Oliver CD, Puttonen P,
2000. Process-based models for forest ecosystem management: current state of the art and
challenges for practical implementation. Tree Physiol. p;20:289–98. https:// doi. org/ 10. 1093/
treep hys/ 20.5- 6. 289.

27. Mahnken M, Cailleret M, Collalti A, Trotta C, Biondo C, D’Andrea E, Dalmonech D, Marano G,
Mäkelä A, Minunno F, Peltoniemi M, Trotsiuk V, Nadal-Sala D, Sabaté S, Vallet P, Aussenac R,
Cameron DR, Bohn FJ, Grote R, Augustynczik ALD, Yousefpour R, Huber ND, Bugmann H,
Merganičová K, Merganic J, Valent P, Lasch-Born P, Hartig F, Vega del Valle ID, et al. , 2022.
Accuracy, realism and general applicability of European forest models. Glob Change Biol.
p;28:6921–43. https:// doi. org/ 10. 1111/ gcb. 16384.

28. O’Sullivan H, Raumonen P, Kaitaniemi P, Perttunen J, Sievanen R, 2021. Integrating terrestrial
laser scanning with functional structural plant models to investigate ecological and evolutionary
processes of forest communities. Ann Bot. p;128:663–83. https:// doi. org/ 10. 1093/ aob/ mcab1
20.

29. Sethi SS, Kovac M, Wiesemüller F, Miriyev A, 2022. Boutry CM Biodegradable sensors are ready
to transform autonomous ecological monitoring. Nat Ecol Evol. p;6:1245–7. https:// doi. org/10.
1038/ s41559- 022- 01824-w.

30. Tredennick AT, Hooker G, Ellner SP, Adler PB. A practical guide to selecting models for
exploration, inference, and prediction in ecology. Ecology. 2021;102(6):e03336. https:// doi.
org/10. 1002/ ecy. 3336.

31. Van Eck NJ, Waltman L, 2011. Text mining and visualization using VOS viewer. ISSI Newsletter.
p;7(3):50–4. https:// doi. org/ 10. 48550/ arXiv. 1109. 2058.

32. Waldrop MM, 2016. The chips are down for Moore’s law. Nature News. p;530(7589):144–7.
https:// doi. org/ 10. 1038/ 53014 4a.

Internet source
https://ec.europa.eu/commission/presscorner/detail/en/ip_23_5909 (accesed on 06.02.2024)


